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Kink dynamics in the spatially modulated ¢* model is studied analytically with the Born approxima-
tion and a collective-coordinate approach, and numerically. Four types of kink behavior can be dis-
tinguished: (i) radiation at high velocity, (ii) strong resonant beating in the kink velocity, (iii) propaga-
tion of the kink with almost periodic velocity oscillations, and (iv) trapping at low velocity. Although
some of these regimes exist also in the sine-Gordon (SG) case, the ¢* model exhibits a much richer dy-
namics due to the existence of a localized internal mode of the kink, which can exchange energy with the
translational mode. The propagation in a modulated substrate is very sensitive to this effect, and in this
respect the ¢* model could be more representative of real systems which may not have the peculiar prop-
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erties of the integrable SG model.

PACS number(s): 03.40.Kf, 02.30.Jr

I. INTRODUCTION

Kinks in one-dimensional systems have been used to
describe various phenomena in solid-state physics such as
dislocations [1-5], ferroelectric [6,7] or ferromagnetic
domain walls [8,9], or charge-density waves [10]. The
basic models consider a set of harmonically coupled par-
ticles (or an elastic string, in the continuum limit) subject-
ed to a substrate potential which is either periodic (like in
the sine-Gordon model) or has a double-well shape (like
in the ¢* model). The parameters of this substrate poten-
tial are generally assumed to be independent of space;
however, there are many physical systems in which this
assumption does not hold. One example is the case of
disordered systems [11] which is currently under active
investigation. Modulated structure, which can be found,
for instance, in two- or three-dimensional incommensu-
rate phases [12] or ferroelastic materials [13], and in al-
loys undergoing a spinodal decomposition [14], form an
important class of examples in which the substrate poten-
tial is modulated periodically. Another case which is
closely connected to this problem is the propagation of a
kink in a discrete lattice because discreteness effects
create an additional “Peierls-Nabarro potential” that
adds a short-wavelength modulation to the substrate [15].

The properties of the sine-Gordon (SG) model per-
turbed by a spatial modulation of wave vector «k of the
substrate potential have been investigated recently
[16—18]. It was found that a moving kink radiates linear
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waves when its velocity is larger than a critical value,
V. =(1+«k*)"12 in analogy with the properties of a
kink in a discrete lattice. The dynamics of a breather
mode in the modulated SG model has also been analyzed
in Refs. [19,20].

The purpose of the present work is to investigate the
properties of kinks in the modulated ¢* model:

b, — b, +[1+esin(kx)](¢*—¢)=0, (1)

where |e| <<1. Our aim is not simply to add a new par-
ticular case to the previous studies. It is more fundamen-
tal because the SG model that was treated is very pecu-
liar and is not representative of the situation that one
may expect in most of the modulated physical systems.
The complete integrability of the SG model is appealing
for the analysis, but, in this system, the spectrum of the
small excitations around the soliton is restricted to the
zero-frequency Goldstone mode and the nonlocalized
phonon excitations corresponding to the continuum part.
This spectrum is obtained by solving a Schrodinger-like
equation for the deviation around the kink, and, in the
Klein-Gordon model bearing topological kinks, the po-
tential created by the kink has the shape of a well. As
soon as this well is deep enough, one can expect several
localized modes and such a situation indeed occurs in
many models such as deformable sine-Gordon models
[21], the double sine-Gordon model [22], or the ¢* model
that we consider here [23]. Therefore, when one consid-
ers oscillations around the kink, the SG model appears to
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be the exception rather than the rule. But for the prob-
lem that we investigate here, the spectrum of the small
oscillations around the kink is crucial because the spatial
modulation of the parameters creates a periodic perturba-
tion of the moving kink, which excites small oscillations
that can take energy away from the kink. The ¢4 model
is interesting because it is representative of a larger class
of physical models than the SG model, and the spectrum
of its small-amplitude oscillations around the kink is well
known. The ¢* kink has an internal shape mode which
can be easily excited due to kink collisions [23] or kink-
impurity interactions [24]. In these cases, energy ex-
change between the kink translational mode and the
internal mode gives rise to spectacular resonance effects
in the kink dynamics [23,24]. It is the purpose of the
present paper to show that the existence of such an inter-
nal mode causes qualitative changes on the dynamics of
the kink in the modulated system with respect to the SG
case.

Although the original unperturbed ¢* system is not ex-
actly integrable (in contrast to the SG model), the main
effects of the modulation can be predicted analytically
due to the well-known mode structure of the correspond-
ing linearized problem (see Ref. [25] and references
therein). The velocity range in which the kink radiates
phonons can be investigated using either the Born ap-
proximation [26] or the secular perturbation theory
[27,28]. This aspect is presented in Sec. II. Having deter-
mined the threshold velocity under which radiations do
not appear, we use a collective-coordinate approach to
analyze the low-velocity domain in which the dynamics is
strongly affected by the internal mode (Sec. III). Section
IV presents numerical simulations used to check the
analytical results, and Sec. V discusses the results.

II. THEORETICAL ANALYSIS
IN THE BORN APPROXIMATION

Since we are interested in the kink dynamics, it is natu-
ral to use a collective-coordinate approach. However,
the previous studies of the modulated sine-Gordon model
have exhibited a high-velocity domain in which the kink
radiates phonons permanently, thus precluding an ap-
proach considering only the localized aspect of the kink.
Therefore, it is necessary to start the analysis of the ¢*
model with a method which is suitable to treat radiation.
This is the case of the Born approximation [26] which

looks for a solution in the form of a perturbed kink:
J
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$(x, )=, (x,8)+P(x,1) , 2)
where
i (x,t)=tanh[y(x —Vt —x,)],
S S
(21— P72’

is the exact kink solution of the unperturbed ¢* equation
and 1 is assumed to be small (|| <<1). Unlike the secu-
lar perturbation theory, the Born approximation does not
take into account a slow time dependence of the kink pa-
rameters, so it can only describe small deviations around
the unperturbed solution, and it is usually only valid
within a restricted time interval which can be roughly es-
timated as ¢ <<e~!. However, it has the advantage of
giving an evaluation of the correction ¥(x,?) in a closed
form (at least as integrals).

Substituting Egs. (2) and (3) into (1) and keeping terms
of the first order in €, we obtain a linear equation,

Yu— Y+ 3L — Y= —esin(kx)$i — ), @)

which can be solved analytically since the eigenvalue
problem of the linear operator,

L¢4s—axx+(3¢i—1) ,
is known [25]. Four our purpose here, it is more con-
venient to analyze the mode structure directly rather
than the final expression of the Green’s function. In this
section we follow the approach developed in Ref. [28],
keeping the same notations.

Defining new coordinates (1,§), {=y(x —Vt —x,), in-
stead of (¢,x), the solution of Eq. (4), ¥(¢,&), is decom-
posed into three contributions: the translational mode
¢'9A1,¢£), the kink internal mode ¢)(z,£), and the pho-
non modes (or radiation) ¢‘P"(z,£),

Y6H=¢'V(1,)+¢1(1,6)+¢PM(1,8) . (5)

After a tedious manipulation [30], the three contributions
can be evaluated analytically. The phonon contribution
determines whether the kink radiates or not. It is given
by

with y= (3)

K _E+iQ 1

¢, 0= [ dk[A_(k;¢,ne
+A (ks e TN (e

where

+mzi[a_mk),k]—mzi[a+(ak),k] ,
)
Ia,k)=vlatk)g(a;*k), gla;k)=—a3+4a+ak?®—a*k —ak —k?, ®)
K, =k+V(k?+4)172 )
Ql=(k*+4)2y)72. (10)
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Its main qualitative features can be found from a simple
study of the poles of the integrand of (6). Let us consider,
for instance A4 _(k,§) (A, is similar). We find the fol-
lowing set of poles:

kf==i, ky=+2, (11a)

k,,izz?’;{1+[1—8V(8Vy“2ixy'2—2iny—‘)]‘/2} ,

(11b)
E,,i=zzl7{1—[1—8V(8Vy_2i:cy“2—2iny_’)]'/2] ,

(11¢)

ki =+2(y2V2—1)12 . (11d)

The first four poles (11a) are generated by the factor
1/(k?+1)(k%+4). The sets kI and kK (with n being a
nonzero integer) result from the functions v( ). The last
two poles (11d) are related to the denominators contain-
ing Q. It follows directly that if ¥ < VP?, where

1
= = (12)
€ (1+K%/2)172

all the poles have imaginary parts; thus the correspond-
ing solution ¢'PY)(,¢) is localized, i.e., it decays exponen-
tially with |£]. On the contrary, if ¥ > VP! the poles
k& are purely real, which means that an extended com-
ponent appears in the fields ¢. Therefore, VP! is a criti-
cal velocity that separates a high-velocity domain in
which the kink emits radiation from a low-velocity
domain in which the kink propagates without radiative
losses. The phase velocity of the radiation near the
threshold point is 1/VP". The structure of the radiation
ahead of and behind the kink is described by 4 , (kF;&,1)
and A_(koi;g‘,t), [i.e., by the contribution of the poles
(11d)], respectively. If the kink velocity approaches unity,
the radiation amplitude goes to zero in accordance with a
power law behind the kink [due to the prefactor (1—¥V?)
in expression (7)] and an exponential law ahead of the
kink [because of the factor v(a+k)]. These results for
the phonon modes are analogous to those found in the
SG system under the same type of perturbation [16,17].

However, an essential difference with the SG case
arises in the ¢* case due to the existence of the kink inter-
nal mode, which gives rise to the contribution

_ 7 sinh{

(s )=
¢ 68 120 cosh?¢

Q
———x[2yk,B(kV
Q2= (eyy XV PUP)]
xla_(Q2),8(Q)]
2(Q+«V)

_ X[a_(9),80)]

2(Q—«V) ’ (13)

where

Q=[3(1—-¥?]"? (14)

is the frequency of the internal mode of a moving kink
and

—__ sinB 2
x(a,B) cosh(a7r/2)(a +1)(11—a?), (15)
Blw)=w(t —2Vy¢) , (16)
ai(0)=2Vyoty k. 17

The amplitude of the internal mode ¢! has a pole at ve-
locity

1
(1+262/3)172°

and, taking the limit V— V'), we find that it contains a
term which grows linearly with time. Although this re-
sult is unphysical because it comes from the assumption
of a constant kink velocity in the perturbation method, it
shows that the internal mode can be strongly excited if
the kink velocity approaches the value given by (18).

It is interesting to notice that the calculation does not
yield a secular growth for the translation mode of the
kink, ¢(°’ (contrary to the case of a stochastic perturba-
tion [28]) because, here, the modulation breaks the
translational invariance of the system.

v=y= (18)

III. COLLECTIVE-COORDINATE APPROACH

The Born approximation fails to describe properly the
long-time contribution of the internal mode to the kink
dynamics in the modulated structure, but it shows that
the characteristic velocity at which the internal mode
resonates is smaller than the critical velocity above which
the kink radiates phonons. Therefore, the role of the
internal mode can be investigated in the velocity range

V<V=(1+k?/2)"172

with a collective-coordinate method that neglects the
phonon modes.

Assuming that the kink is moving with an average ve-
locity ¥V, we consider Eq. (1) in the moving frame defined
by the Lorentz transformation

(x —Vt) _ (t—VWx) (19)
Ta—vye T a—pyia
It becomes

¢,,— b, +{1+esin[k(z +V7)]}(*—¢)=0, (20)

where £=«(1—V?)1/2,

Since the Born approximation has exhibited a secular
growth of the internal mode, we introduce an additional
free parameter A (7), which can be adjusted to compen-
sate for the growth in the spirit of the secular perturba-
tion theory. However, this term alone would give birth
to secular terms related to the zero mode, as shown in
other cases [27,28]. The latter growth can be excluded by
introducing slowly varying kink parameters. Moreover,
since the internal mode is described by an odd function of
z, it is sufficient to introduce a single adiabatic parameter
describing the position of the kink center, without an ad-
ditional correction for the width. Therefore, we look for



a “wobbling” kink of the form

é(z,7)=tanh[z —z4(7)]
1/4
+ A(7)

(21)

The equations for zy(7) and A (7) are obtained through
the effective Lagrangian approach. Inserting the ansatz
(21) into the Lagrangian of the system

L= f_w dz(1¢2— 12— 1{1+e€sin[k(z +V7)]}($*—1)?)
(22)

and assuming that the time derivatives of the slowly vary-
ing parameters are of order €, we obtain, in the second-
order approximation, the effective Lagrangian

Lo=IM i+ A*— 0l 4?)

—€[U(K)+ AF (K)]sin[&(zo+VT)] , (23)
where
_ 2
UR)=—CmE+2) (24)
6sinh(k7/V'2)
Flo)= 9 1/47T(I?2+%)(R:2—60%) 25)
T2 6 cosh(=m/V'2)
M, =2V2/3, o,=1/3. (26)

The equation of motion for the collective coordinates
zy(7) and A (7) can be derived easily:

M zZ,+e[U(K)+ AF (k)] cos[k(zy+V7)]=0,
A+w? A +eF(R)sin[k(zo+V7)]=0,

(27a)
(27b)

where the “dot” refers to the derivative with respect to .

The system (27a) and (27b) shows several important
features of the kink dynamics. A first insight can be ob-
tained by neglecting the internal-mode amplitude in Eq.
(27a). This approximation decouples the two equations
and allows an analytical treatment of the system (27a)
and (27b). If we introduce the kink coordinate
X (1)=V7+zy(7), the differential equation for X is sim-
ply the equation of motion of a particle in a periodic po-
tential:

M X + €U (k) cos(kRX)=0 . (28)

It shows that the kink can propagate in the modulated
medium only if its maximal kinetic energy exceeds the
height of the potential, which requires

= 2
+2)
2, > kmk . (29)
T V2 sinh(kr/V'2)
Thus the average velocity of the kink must be larger than
172
V o~ Vmax =l GEW(E2+2) (30)
‘2 2| V2sinh(Rm/V2)

For a given wave vector k of the modulation, Eq. (30)
defines the velocity V,(k) below which the kink will be

tanh[z —zy(7)]cosh ™ ![z —z4(7)] .
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trapped by the modulation. This effect is very similar to
the trapping by discreteness effects when a narrow kink is
launched in a lattice. A basic problem is to calculate the
shape of the static kink in the modulated system. When
the characteristic length of the modulation (wavelength
2w /k) is larger than the kink width, a perturbative ex-
pansion can be performed, and when the modulation
length is short with respect to the kink width (i.e., k >>1),
it is possible to introduce an average kink using an idea of
Kapitza [29]. Therefore the determination of the struc-
ture of the static trapped kink can be solved analytically
in these two limits.

For V >V,(k), substituting X =V7 into Eq. (27b)
which gives the internal-mode amplitude, we get the
equation of motion of a harmonic oscillator subjected to a
periodic driving force whose frequency is k¥V(1—¥V?)!/2,
Thus, if the kink velocity is such that this frequency ap-
proaches the internal-mode frequency @, =1/, a strong
excitation of the internal mode will be observed. The
characteristic velocity for this resonance is equal to the
velocity ¥'V(k) found via the Born approximation [see
Eq. (18)]. In addition, a measure of the degree of excita-
tion of the internal mode as a function of the wave vector
of the modulation is given by the factor €F(x), which
measures the strength of the driving force applied to the
internal-mode oscillator. Putting K=(«x*+32)'/? in Eq.
(25), we get the strength of the driving force at the reso-

nance velocity V1,

1/4
em(k?+2)k?

(k)= — .
S e 6 cosh[m(k*+3)12/v2]

5 (31)

The function f (k) is presented in Fig. 1, which shows
that the excitation of the internal mode reaches a max-
imum for k~3. When k> 6, f (k)=0, so that the internal
mode will not be significantly excited. This is also in
agreement with the outcome of the Born approximation.
Indeed, recalling Eq. (2.7), one easily finds that the ampli-
tude of the internal mode decays exponentially when
K— o0,

A more complete treatment of the system (27a) and
(27b) can be achieved by numerical simulation of the

0.04

(k)

0.02

0.00 1 L1 | L 1 1 1
0.0 2.0 4.0 6.0 8.0 10.0

k

FIG. 1. The function f (k) defined by Eq. (31), giving the
strength of the excitation of the internal mode as a function of
the modulation wave vector.
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collective-coordinate equations with initial conditions
z¢(0)=0, 2,(0)=0. Once zy(7) has been obtained, the
position X,(¢) of the kink center of mass in the original
(x,t) frame can be obtained by reversing the Lorentz
transform:

XO_Vt
(1_V2)1/2 -

t— VXO
(1_ V2)1/2

z—zo(T)= Zg =0. (32)

The simulations have been performed with a fixed e=0.2
and different values of x. The average velocity ¥ has
been varied from 0 to ¥P"(«). Some results are shown in
Fig. 2. As expected from the simplified treatment, if Vis
below the threshold (30), the kink is trapped in a well of
the modulation [see Fig. 2(a)]. For larger V, it can propa-
gate and its velocity oscillates periodically [Fig. 2(b)].
When V approaches the resonance value V'V, the struc-
ture of the oscillations becomes more complex and a beat-
ing is observed [see Fig. 2(c)]. This beating phenomenon
is due to an energy exchange between the kink transla-
tional mode and its internal shape mode. If the velocity
approaches V'Y, a significant amount of energy is
transferred to the internal mode. Since the total energy
of the system is conserved, the energy of the internal
mode is taken away from the kinetic energy, causing a de-
crease in the kink velocity. In turn, this decrease reduces

0.20 F @)
0.10 —
- -
O
. 0.00
o
<
© -0.10
— 1 | 1 1 ! 1 1 | 1 1 !
0.20 0 100 200 300 400 500 600
t
0.30
(b)
o l
~_ 0.20 l
'S)
>
o L
0.10 1 ! 1 1 1 1 1 | ! 1 1
0 100 200 300 400 500 600
t
()
0.40
as
o {
} 0.35
©
! I
0.30 1 | L | 1 1 | 1 1 1
0 100 200 300 400 500 600
t

FIG. 2. Numerical simulation of Egs. (27a) and (27b) with
€=0.2 and k=3.0. dX,/dt defined by Eq. (32) is presented as
function of time ¢. (a) Trapping of kink at ¥ =0.08. (b) Period-
ic oscillation of kink velocity around ¥V =0.2. (c) Beating near
the resonant velocity ¥ =0.383.

1.0

0.8

0.6

>

0.4 -

0.2

0.0
0.0 2.0 4.0 6.0 8.0 10.0

FIG. 3. Four regions in the phase plane (k, V) where different
kinds of kink dynamics may be observed: (i) radiative decay for
high-velocity kinks, (ii) beating near the resonance velocity
Vi), (iii) periodic oscillations of the kink velocity, and (iv)
trapping for low-velocity kinks.

the energy transfer to the internal mode, which gets pro-
gressively deexcited, causing an increase of kinetic ener-
gy, and the process repeats again. Since the driving force
of the internal mode depends on «, as shown by Eq. (31),
the beating is strong only if « is not too large (k <6.0).

Based on the above analysis, we can derive general con-
clusions about the kink behavior in the modulated ¢*
model. They are summarized in Fig. 3: The («, V) plane
can be divided into four regions characterized by
different behaviors: (i) radiative decay for high-velocity
kinks, (ii) beating near the resonance velocity VD), (iii)
periodic oscillations of the kink velocity, and (iv) trap-
ping for low-velocity kinks. It should be noted that, while
the limiting velocities for phonon radiation or trapping
are sharply defined, the boundary between regions (ii) and
(iii) is not well defined because the excitation of the inter-
nal mode which causes the beating increases gradually
when V— V1),

IV. NUMERICAL-SIMULATION RESULTS

Since all our analytical results are based on some ap-
proximation, it is important to verify them by direct nu-
merical simulations of the full partial differential equa-
tion (PDE) (1). This has been done by discretizing the
modulated ¢* equation (1) with a finite-difference scheme
which conserves a discrete energy [31,32]. The initial
conditions are given by the kink solution of the unper-
turbed ¢* model, and the kink is centered initially at
Xo=2nm/k (n is a suitable negative integer). Most of the
simulations are carried out in the spatial interval
(—120,120) up to time T = 600. For a given set of param-
eters € and k, we change the kink velocity V; and observe
the kink dynamics.

Fixing the strength of the perturbation e=0.2, we have
carried out extensive numerical simulations for different
values of k. The main results are in very good agreement
with the analytical predictions.

First, the critical velocity for radiation is easily ob-
served by starting the kink at high velocity and following
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0.30
0.20

| |
0 100 200 300 400

FIG. 4. Time evolution of the velocity of a kink launched
with a high velocity in the modulated system (k=3.0). The de-
cay is due to radiative losses.

its evolution. Due to strong radiation, the kink velocity
decreases fast until it drops below the critical value VPP
given by Eq. (12). “Knees” are observed in Fig. 4 that
present the kink velocity versus time. This is very similar
to the case of kinks in discrete lattices [33,34]. Further-
more, we have checked the formula (12) for a number of
the other values of k, and a good agreement is observed.
For instance, at k=3.0, the critical velocity of radiation
given by formula (12) is 0.426, while we notice in Fig. 4
that the final kink velocity (after the transition) is bound-
ed by 0.43. In addition, the simulation shows that an ul-
trarelativistic kink with ¥~ 1 decays slowly in agreement
with the factor (1—¥?) in the phonon amplitude [cf. Eq.
(D).

The beating phenomenon due to the internal mode is
also clearly observed. For example, for k=3, the reso-
nant velocity given by Eq. (18) is V'V(x=3)=0.378,
which is chosen to be the initial velocity in the simulation
shown in Fig. 5(a). We see that the velocity of the kink
oscillates between 0.33 and 0.40, i.e., around the resonant
value. For k=35, the resonant value is V'(k=2)=0.238,
and in Fig. 5(b) we indeed observe strong beating near

0.40

(a)

Z0.35 Wi
=

0.30 1 | 1 |
0 100 200 300 400 500 600

0.26
(b)
0.25

—~0.24
)
> 0.23

0.22

0.21 1 1 1 1 1 | 1 | 1 | 1 | 1 1 1
0 100 200 300 400 500 600 700 800

t

FIG. 5. Beating of the kink velocity for a kink propagating
with a speed close to the resonant velocity V'!(k): (a) k=3.0
and (b) k=5.0.
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0.30

0.25 -

0.10 1 | 1 | 1 | 1 | 1 1 1
0 100 200 300 400 500 600

t

FIG. 6. Periodic oscillation of the kink velocity for a kink
with an average velocity far away from the resonant value.

this velocity. Furthermore, we find that the beating is
not present when « is too large.

Third, for a lower velocity, farther away from V'V, a
periodic oscillation of the kink velocity is observed while
the kink is propagating along the system (Fig. 6). In this
case the kink behaves like a point particle moving in a
periodic potential well created by the perturbation. Its
internal mode is not excited significantly since the period-
ic perturbation caused by the modulation is too far from
the resonance condition.

Finally, the trapping of low-velocity kinks is also ob-
served as shown in Fig. 7. The critical velocity obtained
analytically within the collective-coordinate formalism is
verified. For example, for k=, formula (30) gives
V,=0.088, while the simulation result is V*~0.087. At
k=3m /2, the analytical value is 0.027 and the numerical
value is about 0.031.

V. CONCLUDING REMARKS

Our analytical and numerical study of the dynamics of
a ¢* kink in a periodically modulated substrate potential
has revealed several interesting features. First, we have
confirmed the existence of a critical velocity above which
the kink radiates phonons. This phenomenon, which was
also found analytically in the SG case [16-18], is not re-
lated to a specific model but it is a fundamental property
of the nonlinear Klein-Gordon systems. Second, the kink
dynamics is found to be richer in the modulated ¢* model
than in the SG due to the influence of the kink internal
mode. Near a specific velocity, the ¢* kink internal mode
can be strongly excited and deexcited, creating a regular
beating in the kink velocity. The fact that the internal
mode can affect the kink dynamics drastically by its abili-

0.20
0.10
= 0.00
>
-0.10 ‘
-0.20 L 1 1 | 1 1 1 1 1 1 1
0 100 200 300 400 500 600
t

FIG. 7. Trapping of a kink launched with a low initial veloci-
ty. It is vibrating around the minimum of the effective potential
due to the modulation.
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ty to store and release significant amounts of energy was
already known for kink-antikink collisions [23] and
kink-impurity interactions [24], and the propagation over
a modulated structure shows that this is a very general
property.

Based on our results, we can expect to observe similar
resonant beating effects in the other modulated KG mod-
els in which the kinks have an internal degree of freedom
such as the double sine-Gordon [22] or the parametrized
SG [21] models. As for the SG case, its kink has no true
internal mode, so we would expect that the beating
should not appear in such a model. Nevertheless, the ex-
istence of the so-called “quasimode” of the SG kink [35],
which is a long-lived oscillation of the kink shape, may
also create some kinds of beating effects. Recent prelimi-
nary numerical simulations [36] show that the beating
effects in the SG model are not as well defined as those in
the ¢* model.

Finally, we would like to mention two points. First, as
previously noted there is a strong similarity between the
case of a modulated substrate and the properties of kinks
in discrete lattices. Therefore, the analytical calculations
that we have performed here can be expected to be valid

to predict some properties of discrete lattices, as long as
the amplitude of the Peierls-Nabarro potential has been
calculated. Second, the numerical simulations of the full
PDE have shown a remarkable agreement with the
analytical calculations. In particular, our collective-
coordinate approach has successfully predicted the reso-
nant beating effects in the kink velocity. This points out
once again that, while topological solitons (kinks) can
behave like classical “particles,” the internal degrees of
freedom of these “particles,” when they exist, must be
taken into account in the collective-coordinate analysis.
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